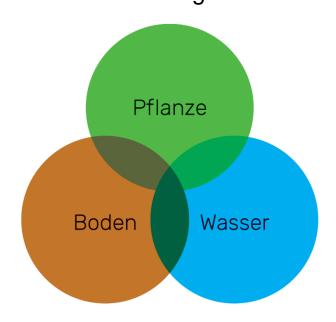
Netzwerk von Pilotbetrieben

Forschung zur Nachhaltigkeit von Landbausystemen

HUNTER

Berechnung von Nährstoff-, Treibhausgas- und Energiebilanzen im Pflanzenbau mit einem Exceltool


Harald Becker (IfÖL) Harald Schmid (TUM) Richard Beisecker (IfÖL)

8. Arbeitsforum Treibhausgasbilanzierung und Klimaschutz in der Landwirtschaft, 8.+9. Oktober 2018, Agroscope

Kurze Vorstellung: IfÖL

Das Ingenieurbüro für Ökologie und Landwirtschaft (IfÖL) in Kassel ist an den Schnittstellen Boden- und Gewässerschutz in der Land- und Forstwirtschaft tätig.

 Als Dienstleistungs- und Beratungsbüro erstellen wir Nutzungsanalysen sowie Maßnahmen- und Beratungskonzepte für eine gewässerschonende und nachhaltige Landnutzung.

Arbeitsgebiete

- Agrar- und Umweltberatung
- Bodenkartierung und Standortbewertung
- Gewässerschutz
- Landnutzungs- und Beratungskonzepte
- Umweltplanung
- Angewandte, praxisorientierte
 Forschungs- und Entwicklungsvorhaben

www.pilotbetriebe.de

Netzwerk Pilotbetriebe seit 2009 bis 01/2019 mit 80-73 Betrieben (50% mit Milchvieh)

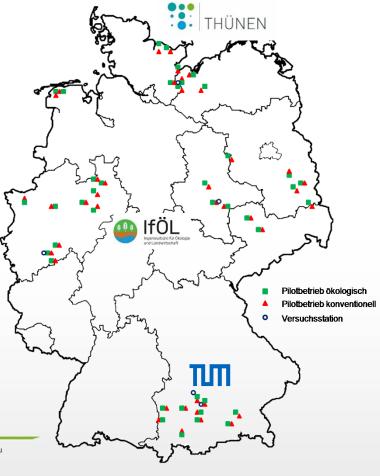
I Modellierung der gesamtbetrieblichen Klimawirkungen (REPRO-basiert)

II Verknüpfungen aufdecken: Tierwohl, Ressourceneffizienz (Landnutzung, N, P, Klima)

III Beratungsformate entwickeln

Workshops

Humusrechner


Nährstoffrechner

Klimarechner

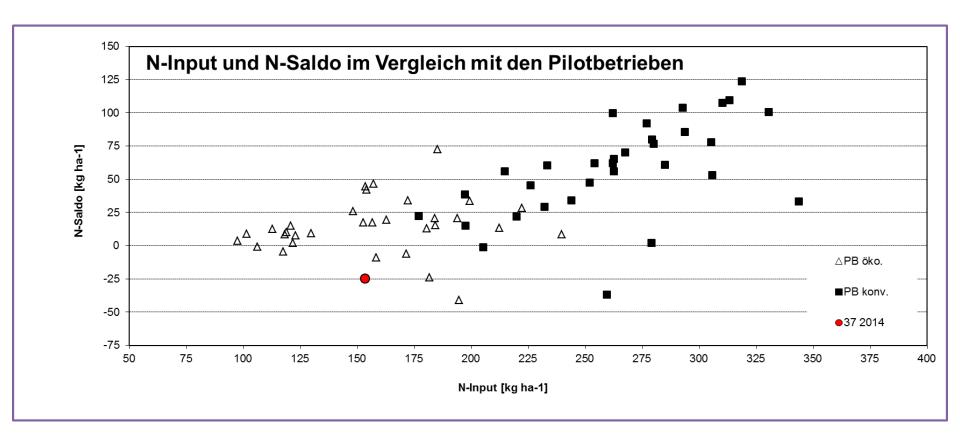
Tierwohl-Tool Milchvieh

Landwirtschaft

Netzwerk von Pilotbetrieben

Wofür ist der HUNTER gedacht

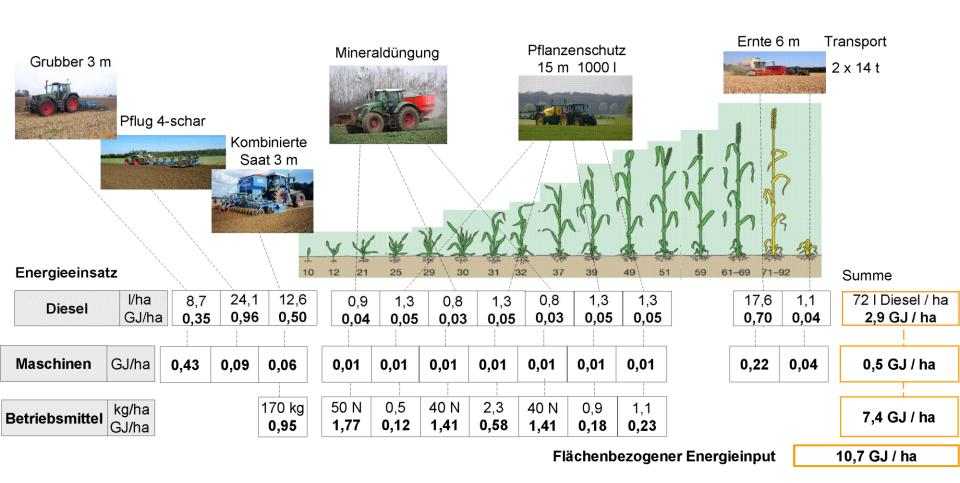
- Gleichzeitige und zusammenfassende Bilanzierung von Nährstoffen, Energie und Treibhausgase (THG)
- Relativ schneller Überblick über einen Einzelbetrieb
- Benchmarking mit anderen Betrieben
- Identifizierung gravierender pflanzenbaulicher Schwächen, wie z.B.
 - Humusdefizit
 - Hoher Energieeinsatz
 - Hoher THG-Ausstoß
 - Stark negative P-Salden oder K-Salden kulturartspezifisch oder gesamtbetrieblich
 - Niedrige Erträge bestimmter Kulturen
- Nachhaltigkeitsbewertung zur Einschätzung, wo ein Betrieb im Pflanzenbau steht
- Für Berater (Pflanzenbau/Betrieb) und qualifizierte Landwirte



Prinzip der Humusbilanzierung

- HE-Methode statische Methode (feste Koeffizienten)
 Humusbedarf ist Abhängigkeit von Fruchtart, Bewirtschaftung, Ackerzahl
 (HE = 1 t Humus mit 580 kg C und 55 kg N)
- HE-Methode dynamische Methode (dynamische Koeffizienten)
 Humusbedarf ist Abhängigkeit von Fruchtart, Bewirtschaftung, Ackerzahl, Ertrag, min. Düngung und Niederschlag
 (HE = 1 t Humus mit 580 kg C und 55 kg N)
 - <u>VDLUFA-Methode</u> feste Koeffizienten für oberen, mittleren, unteren Wert Humusbedarf ist Abhängigkeit von Versorgungsgrad des Standortes mit Humus und der Intensität der Stickstoffdüngung.
- Vorgabe nach Cross- Compliance feste Koeffizienten Humusbedarf in Anlehnung an den VDLUFA-Standpunkt.

Arbeit am realen Objekt: ERGEBNISSE

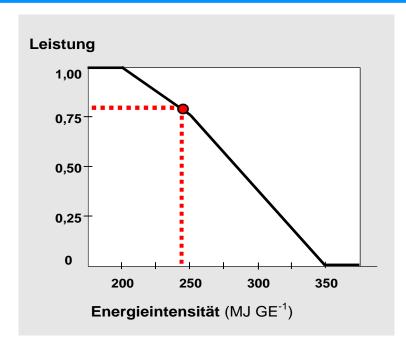

Berechnung Energiebilanz

- Verbrauch fossiler Energie
- Solare, tierische und menschliche Energie werden nicht berücksichtigt
- Direkter Energieinput:
 - → verfahrensspezifischer Dieselverbrauch
- Indirekte Energieinputs: Saatgut, Düngemittel,
 Investitionsgüterenergie, Pflanzenschutzmittel (PSM)
 - → "Energie-Rucksack"
- Output: Haupt- und Nebenprodukte
- Bezugsebene: Produkt oder Fläche

Einsatz fossiler Energie beim Anbau von Winterweizen (konv.)

Produktbezogener Energieinput

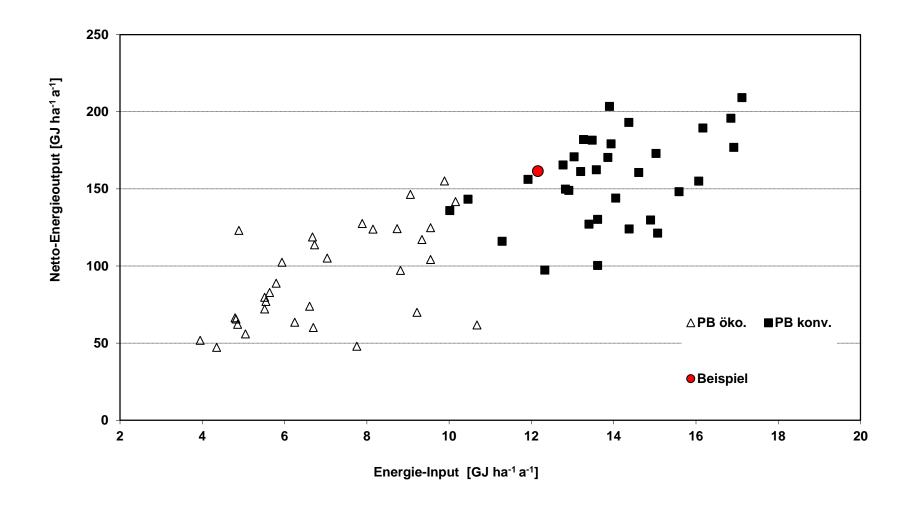
Konv. Winterweizen 70 dt/ha, Hofentfernung 1,5 km


153 MJ / dt Weizen

Runterbrechen für HUNTER

- Aus vielen hundert Arbeitsgängen in REPRO wurden "typische" Arbeitsgänge für die Anbauverfahren ausgesucht
- Für Berücksichtigung der Bodenart (leicht, mittel, schwer) - Faktor 0,8/1/1,2

Fruchtart / Kultur	Stoppelbearbeitung (nach d. Vorfrucht)		Grundbodenbearbeitung		Saatbettbereitung & Bestellung		mech. Unkrautbekämpfung & Pflege	
	Arbeitsgänge	Fläche [%]	Arbeitsgänge	Fläche [%]	Arbeitsgänge	Fläche [%]	Arbeitsgänge	Fläche [%]
ZF_Nichtlegumi (Kreuzbl.+Phac.)	2x Grubbern: 1x flach, 1x tief				Kreiselegge-Drillmaschine- Kombi	100		
Grünland							Wiese abschleppen	50
Mais (Silomais)	1x Kurzscheibenegge				Mais legen	100		
Winterweizen	2x Grubbern: 1x flach, 1x tief				Drillmaschine	100		
Ackergras			Pflug > 20 cm		Kreiselegge-Drillmaschine- Kombi	100		


Bewertung der Energieeffizienz

Bereich	MJ GE ⁻¹	Begründung, Problembereich
hohe Energieeffizienz	≤ 200	Optimalbereich
mittlere Energieeffizienz	200 – 275	
geringe Energieeffizienz	275 – 350	
ungenügende Energieeffizienz	> 350	Ressourcenverbrauch, CO ₂ -Relevanz, Regelungsintensität

Vergleich mit Pilotbetriebsdaten

Fazit: Energiebilanzierung mit HUNTER

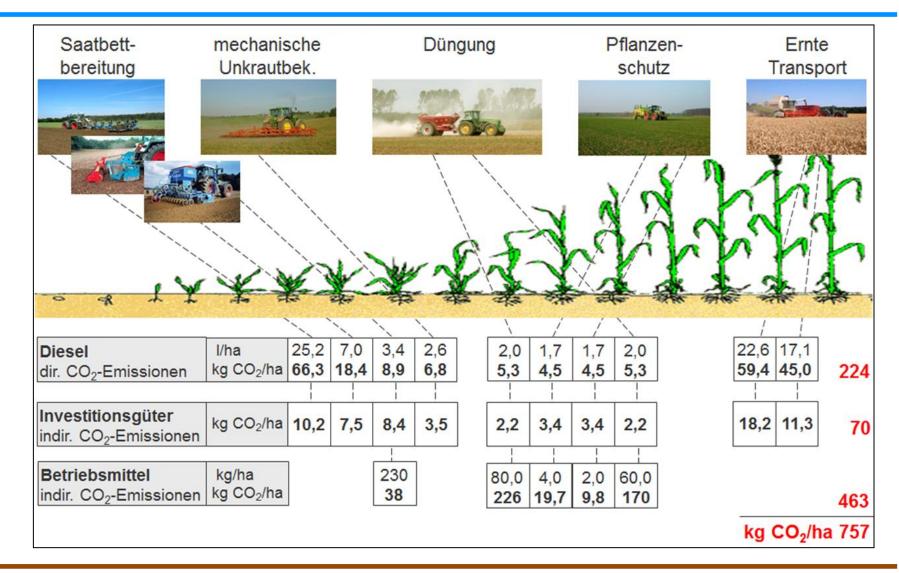
- Aus REPRO abgeleitet, aber deutlich vereinfacht
- Übernimmt Anbaudaten aus Humusbilanz
- Pluspunkt: Vergleich mit Pilotbetriebsdatensatz

Berechnung Treibhausgasbilanz

- direkte Emissionen:
 - Dieselverbrauch
 - Düngung (CO₂- und N₂O-Emissionen)
 - Ausgasung
- Humusbilanz: CO₂-Sequestrierung oder -Freisetzung
- indirekte Emissionen analog zu Energie
 - → "THG-Rucksack" der Betriebsmittel

Treibhausgase: Abschätzung

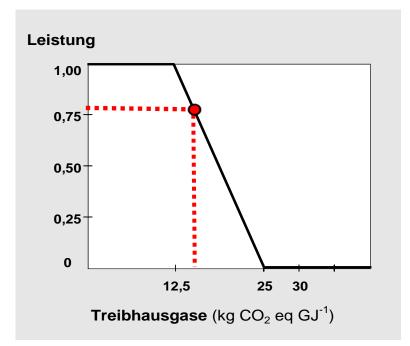
CO₂ eq ha⁻¹ Nach BEK 2016 → Umrechnung der N₂O-Emissionen in CO₂ eg N₂O-Emissionen vollständige Abbildung der Produktionsverfahren **Treibhauspotential kg Energieeinsatz** → direkter und indirekter Energieeinsatz → Emissionsäquivalente → CO₂-Emissionen Quantifizierung der Boden-C-Vorratsänderung auf Grundlage der Humusbilanzierung C-Sequestrierung → negative Humusbilanz = C-Freisetzung Quantifizierung der Boden-C-Vorratsänderung auf Grundlage der Humusbilanzierung C-Sequestrierung → positive Humusbilanz = C-Rückbindung


Emissionsquellen nach BEK 2016

Lfd. Nr.	Emissionsart und -quelle			
Direkte un	d indirekte Treibhausgasemissionen vom Feld			
P _F 1	N ₂ O-Emissionen aus NH ₃ -Verlusten bei Düngung mit Wirtschaftsdüngern	1		
P _F 2	N ₂ O-Emissionen aus NH ₃ -Verlusten bei Düngung mit Mineraldüngern	1		
P _F 3	N ₂ O-Emissionen aus der Düngung mit Wirtschaftsdüngern	1		
P _F 4	N ₂ O-Emissionen aus der Düngung mit Mineraldüngern	1		
P _F 5	N ₂ O-Emissionen aus Ernte- und Wurzelrückständen, Nebenprodukten			
P _F 6	N ₂ O-Emissionen aus anzurechnendem Stickstoff aus organischer Düngung des Vorjahres			
P _F 7	CO ₂ -Emissionen aus Kalk- und Harnstoffdüngung	1		
P _F 8	CO ₂ -Emissionen/-Bindung aus Humusabbau bzwaufbau der angebauten Fruchtart	1		
P _F 9	N ₂ O-Emissionen aus dem Humusabbau der angebauten Fruchtart	1		
P _F 10	CO ₂ -Emissionen/-Bindung aus Grünland- bzw. Ackerlandumwandlung			
P _F 11	N ₂ O-Emissionen aus Grünlandumwandlung in Ackerland			
P _F 12	CO _{2e} -Emissionen aus Humusabbau bei der Bewirtschaftung organischer Böden			
Vorgelager	rte Treibhausgasemissionen aus dem Betriebsmitteleinsatz			
P _b 1	CO _{2e} -Emissionen aus Mineraldüngerbereitstellung	1		
P _B 2	CO _{2e} -Emissionen für düngewirksame Nährstofflieferung aus Wirtschaftsdüngereinsatz			
P _B 3	CO _{2e} -Emissionen für düngewirksame Nährstofflieferung der Vorfrucht und Aus-scheidungen auf der Weide			
P _B 4	CO _{2e} -Emissionen aus Saatgutbereitstellung	1		
P _B 5	CO _{2e} -Emissionen aus Pflanzenschutzmittelbereitstellung	1		
P _B 6	CO _{2e} -Emissionen aus Energiebereitstellung und -konversion	1		
P _B 7	CO _{2e} -Emissionen aus Maschinenherstellung	1		

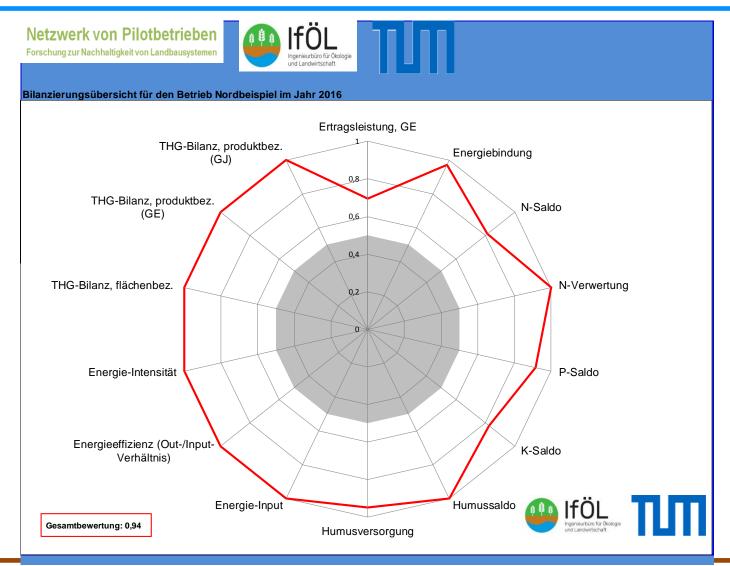
→(bisher) wurden 13 von 19 vorgeschlagenen Emissionsquellen eingearbeitet

THG-Emissionen im Pflanzenbau

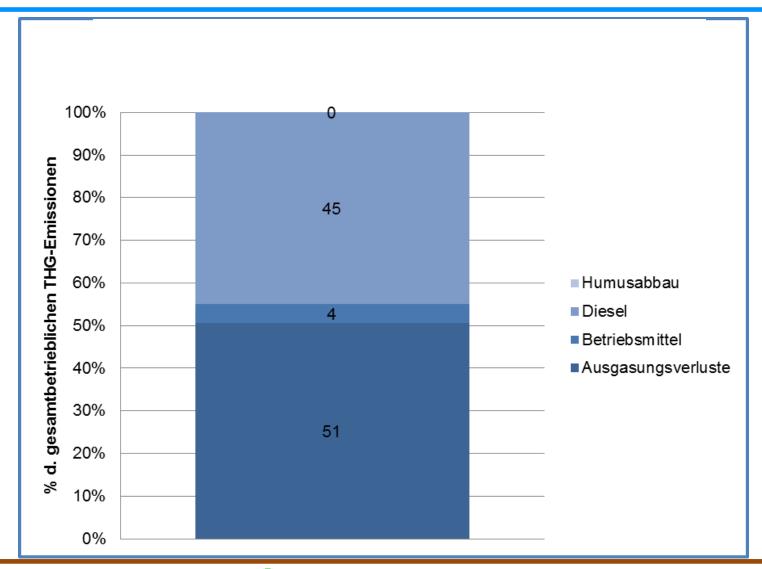

Beispiel Lachgasverluste nach BEK

P _F 3: N₂O-Emissionen aus der Düngung mit Wirtschaftsdüngern (Beispiel Rindergülle)				
Rechenschritt	Wert	Einheit	Datenherkunft	
ausgebrachte WD-Menge	35,00	m³/ha	Betrieb	
* Stickstoffgehalt des WD	5,00	kg N/m³	Betrieb	
= Ausgebrachter WD-N	175,00	kg N/ha	Ergebnis	
* Mineraldüngerwirksamkeit des ausgebrachten WD-N	60,00	%	DüV	
= MDÄ des ausgebrachten WD-N	105,00	kg N/ha	Ergebnis	
- NH ₃ Ausbringungsverluste	25,48	kg NH ₃ -N/ha	P _F 1	
= düngewirksamer WD-N	79,52	kg N/ha	Ergebnis	
* N₂O EF für düngewirksamen WD-N	0,0135	kg N₂O-N/kg N	Parameterdatei	
* Umrechnungsfaktor	1,57	kg N ₂ O/kg N ₂ O- N	Parameterdatei	
* Umrechnungsfaktor GWP ₁₀₀	298,00	kg CO _{2e} /kg N ₂ O	Parameterdatei	
= CO _{2e}	502,26	kg CO _{2e} /ha	Ergebnis	

Im HUNTER exakt so umgesetzt.

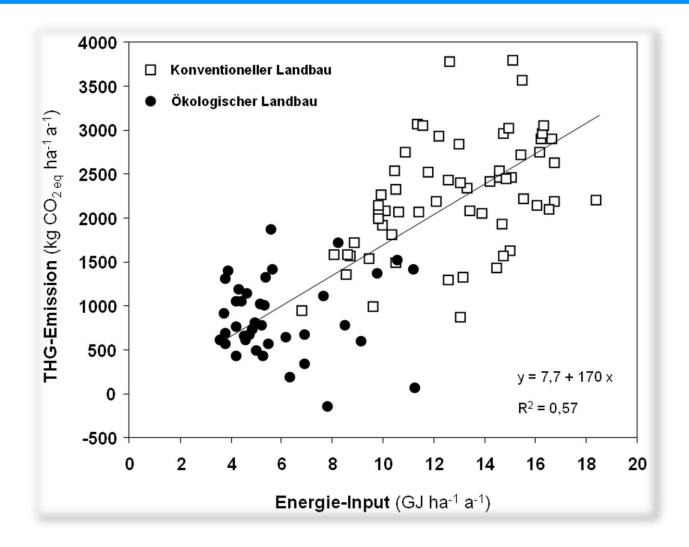

Evaluation of GHG emissions

reference level: product (GJ)



section	kg CO _{2 eq} GJ ⁻¹	notes
low GHG emissions	≤ 12,5	optimum
medium GHG emissions	12,5 – 18,75	
high GHG emissions	18,75 – 25	
irresponsible high GHG emissions	> 25	pertinence for climate (carbon-foot-print), very high resource input, (humus degradation)

Zusammengefasste Nachhaltigkeitsbewertung - Netzdiagramm



Ergebnisdarstellung: Anteile der THG

In Arbeit: THG- Vergleich mit HUNTER-Ergebnissen

Beispiel: Hülsbergen & Schmid 2010

Erste Ergebnisse THG: Betriebsebene

Betriebsebene [n = 45]					
THG Emissionen [kg CO2 eq/ha]	konventionell	ökologisch			
Saatgut	45	68			
Bodenbearbeitung	211	255			
Ernte	174	128			
Chem. Pflanzenschutz	31	1,5			
Mineraldüngung	1.596	60			
Organische Düngung	830	332			
Gesamt THG Emissionen	2.887	845			
Gesamt THG Emissionen [kg CO2 eq/GJ]	15,4	8,1			

Erste Ergebnisse THG: Kulturart

Winter Wheat [n = 33]					
THG Emissionen [kg CO2 eq/ha]	Konventionell	ökologisch			
Saatgut	112	107			
Bodenbearbeitung	247	365			
Ernte	61	64			
Chem. Pflanzenschutz	45	-			
Mineraldüngung	2,059	235			
Organische Düngung	648	585			
Gesamt THG Emissionen	3.172	1.356			
Gesamt THG Emissionen [kg CO2 eq/GJ]	15,9	12,8			

Fazit und Ausblick

- Funktioniert
- Sorgt auf den Pilotbetrieben für großes Interesse →vor allem die Vergleichsmöglichkeit
- Datenbank wächst
- Pilotbetriebe-Projekt endet Verbreitung?

Danke für die Aufmerksamkeit!

Ingenieurbüro für Ökologie und Landwirtschaft (IfÖL) Kassel

Harald Becker hb@ifoel.de 0561-701515-12

www.pilotbetriebe.de